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Abstract

Passive microseismic data are commonly buried in noise, which presents
a significant challenge for signal detection and recovery. For recordings
from a surface sensor array where each trace contains a time-delayed ar-
rival from the event, we propose an autocorrelation-based stacking method
that designs a denoising filter from all the traces, as well as a multi-channel
detection scheme. This approach circumvents the issue of time aligning
the traces prior to stacking because every trace’s autocorrelation is cen-
tered at zero in the lag domain. The effect of white noise is concentrated
near zero lag, so the filter design requires a predictable adjustment of the
zero-lag value. Truncation of the autocorrelation is employed to smooth
the impulse response of the denoising filter. In order to extend the ap-
plicability of the algorithm, we also propose a noise prewhitening scheme
that addresses cases with colored noise. The simplicity and robustness of
this method are validated with synthetic and real seismic traces.
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1 Introduction

Microseismic monitoring is of great interest for its capability of providing
valuable information for many oil and gas related applications, such as hy-
draulic fracturing monitoring, unconventional reservoir characterization, and
CO2 sequestration (Duncan and Eisner 2010; Maxwell, White and Fabriol 2004;
Phillips et al. 2002; Warpinski 2009). In practice, microseismic monitoring is
performed using downhole, surface, or near surface arrays (Duncan and Eisner
2010). Recently, there is a preference for surface arrays which can be deployed
more economically and efficiently. However, recorded surface microseismic sig-
nals are much noisier than downhole data, because surface or near surface arrays
are susceptible to both coherent and incoherent noise.

Consequently, it is challenging to extract useful information from the recorded
microseismic data. Typically, the signal-to-noise ratio (SNR) of recorded micro-
seismic data is rather low, especially for the data collected using surface arrays.
The noise adversely affects the accuracy of many microseismic analyses, such as
P-wave and S-wave arrivals picking, event detection and localization, and focal
mechanism inversion (Sabbione and Velis 2010; Zhang, Tian and Wen 2014;
Zhu, Liu and McClellan 2015). In fact, the majority of microseismic events
induced by hydraulic fracturing has a typical moment magnitude MW < −1
(Song et al. 2014).

We consider the case of a sensor array that records multiple traces, and as-
sume that the microseismic signal of interest is present in all the traces. There-
fore, stacking is one of the primary techniques to consider for improving SNR,
as it is well known for seismic applications (Yilmaz 2001). However, for micro-
seismic data time alignment of the traces, which is the prerequisite of stack-
ing, is generally unknown. Thus, researchers have developed algorithms based
on cross-correlation to find the relative time delays between traces (Al-Shuhail,
Kaka and Jervis 2013; Grechka and Zhao 2012). In contrast to the case of an ac-
tive seismic where the source generates a controllable active wavelet, the wavelet
of a microseismic event is unknown, although some empirical knowledge of the
frequency domain characteristics may be available. The cross-correlations are
usually computed from noisy traces rather than from a clean signal template.
Therefore, the maximal value of the cross-correlation may occur at an incor-
rect lag because of the noise. To bypass this bottleneck, we propose denoising
and detection schemes using stacked autocorrelograms, which are automatically
aligned at the zero lag. The simplicity and robustness of the proposed schemes
are demonstrated by using both synthetic and real data. In the literature, the
stacked cross-correlation and autocorrelation have already shown promising re-
sults in different scenarios (Liu et al. 2016; Wapenaar et al. 2010a,b; Zhang
et al. 2014).

2



2 Denoising

Problem formulation

Assume the sensor array for microseismic monitoring has N channels. Each
recorded trace contains a microseismic waveform contaminated by noise, i.e.

xi(t) = aisi(t) + ni(t), i = 1, . . . , N, (1)

where ai are amplitude scaling factors, and ni(t) is zero mean additive white
Gaussian noise (AWGN) with variance σ2. For simplicity, we first consider
only white noise whose power spectrum is flat; the colored noise scenario, whose
power density has different amplitudes for different frequencies, will be discussed
in a later section.

Theoretically, seismic traces received on different sensors are convolutions
of the same source wavelet with Green’s functions which are determined by
the real Earth and source and sensor locations (Aki and Richards 2009; Stein
and Wysession 2002). Nonetheless, a high resemblance between different traces
originated by the same event and collected by spatially close sensors is usually
observed (Arrowsmith and Eisner 2006). Therefore, it is reasonable to assume
that si(t) are all the same waveform but with different time delays, i.e., si(t) =
s(t− τi). In addition, we assume the ni(t) are uncorrelated with the waveform
s(t) and independent of each other; uncorrelated noise on different channels is
a common assumption for the validity of any stacking technique.

The processing is performed on digital signals, sampled at a rate fs = 1/∆t,
so that the time variable t becomes tl = t0 + (l− 1)∆t for l = 1, . . . , L. On each
trace, we consider a finite time window of data which contains L time samples,
so the signals can be written as

xi[l] = aisi[l] + ni[l], l = 1, . . . , L (2)

where xi[l] = xi(tl). In this work, we define the SNR of the i-th channel as the
ratio of the signal energy to the AWGN energy, i.e.,

SNRi = 10 log10

(
a2i ‖si‖22
‖ni‖22

)
. (3)

As reference, we use the peak-signal-to-noise ratio (PSNR) as well

PSNRi = 10 log10

(
a2iP

2
i

σ2

)
, (4)

where Pi is the peak value of si(t). When the wavelet duration is short, the
PSNR is more intuitive than SNR, because its value is not affected by the signal
length.

2.1 Denoising Filter Design

The proposed approach is implemented with the following three steps:

3



1. Compute the autocorrelation function (ACF) of each trace (denoted by ?)
and then stack the ACFs,

rs[τ ] =
1

N

N∑
i=1

(xi ? xi)[τ ], (5)

where τ = −L+ 1, . . . , 0, . . . , L− 1 is the lag index of the ACF.

2. Define the denoising filter’s impulse response as a windowed version of the
modified ACF, f [τ ] = r̂s[τ ]wd[τ ], where

r̂s[τ ] =

{
1
2

(
rs[−1] + rs[1]

)
if τ = 0

rs[τ ] otherwise
(6)

The zero-lag value of the ACF is replaced with the average of its neigh-
boring values, rs[1] and rs[−1]. The justification for this change is that
additive white noise has an ACF that is Lσ2δ[τ ], where δ[τ ] is the discrete
Dirac delta impulse function and only gives nonzero value at τ = 0. Thus
the ACF rs[τ ] has a large peak at τ = 0 which needs to be reduced by
Lσ2; the average of the neighboring values provides an estimate of the
correct zero-lag value of the signal-only ACF.

3. A truncation window wd[τ ] is then applied to the zero lag region, if nec-
essary, so that the negligible values in the filter (away from τ = 0) will be
eliminated. A proper truncation window that shortens the filter length will
improve the computational efficiency as well. Various truncation windows
are available, however we adopt a simple triangle window

wd[τ ] =

{
1− |τ |/d if |τ | ≤ d
0 otherwise

(7)

where 2d+ 1 is the length of the truncation window.

4. Convolve f [τ ] with each noisy trace in the collection. The result of these
convolutions provides the N denoised traces x̂i[l] = (f ∗ xi)[l] for i =
1, 2, . . . , N .

In Figure 1, we show the stacked autocorrelation rs[τ ] and the filter f [τ ]
based on it for the case of a 30-Hz Ricker wavelet sampled at fs = 500 Hz,
which is also treated in the denoising example for synthetic data in Section 3.1.
The spiky peak in rs[τ ] at zero lag is removed by the average operation (6) to
obtain f [τ ].

Compared with a cross-correlation based method, this new autocorrelation-
based approach has approximately the same computational burden, since com-
puting one ACF or one cross-correlation function (CCF) is O(L log2(L)). In
fact, some overhead is removed by avoiding the search for the maximal value
needed for alignment.
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Figure 1: (a) Stacked autocorrelation (b) denoising filter. L = 200 and σ = 0.3, so the
peak height removed is approximately Lσ2 = 18.

2.2 Frequency Response Analysis

In order to evaluate the performance of the designed filter, we examine the
frequency response of the filter f [τ ] since the analysis of the filter performance
is easier to conduct in the frequency domain. The Fourier transform (F) of the
ACF rs(τ) is

Rs(e
jω) = F{rs(τ)}

=
1

N

N∑
i=1

Xi(e
jω)Xi(ejω)

=
1

N

N∑
i=1

(a2i |Si(e
jω)|2 + |Ni(e

jω)|2 + aiSi(e
jω)Ni(ejω) + aiNi(e

jω)Si(ejω))

≈ |S(ejω)|2 1

N

N∑
i=1

a2i +
1

N

N∑
i=1

|Ni(e
jω)|2, (8)

where the last line is derived from the assumption that the signal s(t) and noise
ni(t) are uncorrelated. The two terms in (8) are scaled versions of the power
spectrum of the signal (i.e., magnitude squared), and the power spectrum of the
noise which is a random variable at each frequency ω. If we assume ai = 1 for
all i, then there is no scaling of the first term. The second term is the expected
value of the noise power spectrum which for white noise is equal to Lσ2 for all
frequencies.

We can now justify the definition of r̂s[τ ] in equation (6). Compared with
the rs(τ), the designed filter is modified slightly from the autocorrelation by
removing the peak at zero lag. However, the frequency response is beneficially
manipulated for the denoising purpose. For ease of exposition, we assume ai =
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1 for all i. When the sampling frequency is high enough and noise is white
f [0] = 1

2 (rs[−1] + rs[1]) = rs[−1] turns out to be an accurate approximation of
the energy of s(t). We then can decompose rs[0] into two parts

rs[0] = r̂s[0] + p. (9)

Again, because signal s(t) and noise ni(t) are uncorrelated,

rs[0] =
1

N

N∑
i=1

(‖xi‖22) = ‖s‖22 +
1

N

N∑
i=1

‖ni‖22, (10)

and
r̂s[0] ≈ ‖s‖22. (11)

Subtracting equation (11) from (10), we obtain

p ≈ 1

N

N∑
i=1

‖ni‖22 =
1

NL

N∑
i=1

‖Ni(e
jω)‖22, (12)

by Parseval’s theorem. Therefore, p is approximately the average energy of the
noise over all traces.

We reformulate rs[τ ] as

rs[τ ] = r̂s[τ ] + pδ[τ ]. (13)

For a certain frequency ω, the frequency response of the filter r̂s[τ ] is expected
to be the power of the signal at ω when the noise is white,

E[F{r̂s[τ ]}] = E[F{rs[τ ]− pδ[τ ]}]
= E[F{rs[τ ]}]− p

≈ E[
1

N

N∑
i=1

|Xi(e
jω)|2]− 1

NL

N∑
i=1

‖Ni(e
jω)‖22

≈ E[
1

N

N∑
i=1

|Si(e
jω)|2] + E[

1

N

N∑
i=1

|Ni(e
jω)|2]− 1

NL

N∑
i=1

‖Ni(e
jω)‖22

≈ E[
1

N

N∑
i=1

|Si(e
jω)|2].

(14)
Here we can see that the proposed filter r̂s[τ ] (without truncation) shifts the
frequency response amplitude of rs[τ ] down by p. The frequency response of
the filter is literally an estimation of the power spectrum of the signal.

Due to the focal mechanism of the seismic source, the waveforms received
on the sensor array can have different amplitudes and phases (i.e., the signs of
ai). Corrections to the signs are helpful when we stack the traces or perform the
cross correlations. Otherwise, stacking waveforms of different signs would cancel
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each other rather than enhance them. One advantage of ACF-designed filter
f [τ ] over cross-correlation based method is that f [τ ] is not affected by the signs
of ai. Essentially, stacking autocorrelation is equivalent to stacking squared
frequency response amplitude in frequency domain where all ai are squared
as in equation (8). The dispersion of wave is another phenomenon which is
harmful to the stacking techniques in the time domain. However, the stacked
autocorrelation is not affected by dispersion, for the same reason. Although the
idea of enhancing the signal in the frequency domain is widely used, one obvious
advantage of the proposed scheme is that it produces a band pass filter (BPF)
that adapts to the received signals instead of using a filter whose pass band is
specified a priori.

Recall the truncation window in equation (7) applied to the filter, which ex-
pedites the convolution step. In addition, the truncation of the filter introduces
a smoothing effect in its frequency response. Usually, the smoothing effect is
beneficial to the denoising filter performance.

2.3 Noise whitening

One of the basic assumptions behind the proposed denoising scheme is that
of additive white noise. In practice, seismic noise is often colored when it is
related to the environment, weather, or human activities. And hence the auto-
correlation of the noise could be far from an impulse function. So, we would not
be able to eliminate the noise’s frequency response by manipulating the stacked
autocorrelation value only at the zero lag position. To generalize for the colored
noise case, we advocate a noise whitening scheme based on linear prediction
theory.

Before discussing the whitening algorithm to flatten the noise spectrum, we
state two assumptions: (1) the samples of the colored noise are from a stationary
random process, and (2) we have a snapshot of the noise-only data of sufficient
time duration. This second assumption would be practical for microseismic
monitoring, since the noise-only data can be recorded before the fluid injection
activities are started.

Let v(t) be the stationary, colored noise signal. Any wide sense stationary
random process can be modeled using an Auto Regressive (AR) model if the
order of the model is chosen large enough (Kay 1988; Makhoul 1975). Then
we can apply a linear prediction filter with coefficients {ck} to predict the next
sample using P previous samples

v̂[l] =

P∑
k=1

ckv[l − k], (15)

where P is the order of the prediction filter. In general, the prediction is not
perfect, so there will be a prediction error sequence

e[l] = v[l]− v̂[l]. (16)
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The optimal linear predictive coding (LPC) coefficients minimizes the prediction
error power of the P -th order linear predictor (Kay 1988). This operation has
been shown equivalent to maximizing spectral flatness at the output of predic-
tion error filter (Gray Jr. and Markel 1974; Markel and Gray Jr. 1976). For an
AR(P ) process, the optimal prediction coefficients are the AR(P ) parameters
itself. The prediction error filter thus acts as a whitening filter that decorrelates
the input AR process to produce white noise as its output. Determining P is
the model order selection problem which can be handled by using the fact for a
linear predictor of order q, satisfying q > P where P is the true order of the AR
process, the error power is constant (Kay 1988). Even if the order of the AR(P )
process and the order q selected for the linear predictor are not the same, the
output prediction error will be white if q ≥ P .

The block diagram with the linear predictor used as a whitening filter is
shown in Figure 2. In the z-transform domain the whitening filter H(z) is given
by

H(z) = 1−A(z) (17)

where A(z) is the linear prediction filter

A(z) =

P∑
k=1

ckz
−k. (18)

The prediction coefficients ck can be computed using the autocorrelation method
of AR modeling. This involves estimating the autocorrelation sequence from
the time series and solving the Yule-Walker equations through Levinson Durbin
recursion (Kay 1988; Ljung 1987). The design of the whitening filter for each
trace can be carried out during an initial noise-only segment of data. Then we
whiten each noisy trace before designing the denoising filter f [τ ].

dnfilter.graffle

v[l]v[l]
-
+ Error Sequence

ê[l]
v̂[l]v̂[l]

Figure 2: Whitening filter

3 Denoising examples

3.1 Synthetic data: Ricker wavelet

For synthetic data, we assume that there are 200 traces with identical am-
plitude scaling, i.e., ai = 1. The waveform s(t) is a Ricker wavelet with center
frequency of 30 Hz and a normalized peak value. The sampling frequency is
500 Hz and each trace has 200 time samples. Based on the SNR given in (3), two
cases are considered: −6.03 dB and −12.01 dB, where the AWGN has σ = 0.3
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and 0.6, respectively. In Figure 3 we show noiseless signals superimposed on
noisy versions for these two cases. Recall that plots of the stacked ACFs shown
previously in Figure 1 were generated for the case of σ = 0.3.
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Figure 3: Noiseless and noisy traces, (a) SNR=−6.03 dB; (b) SNR=−12.01 dB. The
corresponding PSNR values are 10.46 dB and 4.44 dB, respectively.

For conciseness, we present only the first 20 noisy traces of these two noise
levels in Figures 4(a) and 4(c), respectively. The final denoising results by the
proposed scheme are shown in Figures 4(b) and 4(d). In both cases, the micro-
seismic events in these very low SNR datasets are significantly enhanced. For
the low noise case, the denoised data have SNR=2.51 dB (i.e., PSNR=17.60 dB).
Additionally, the high noise case, the denoised data have SNR=0.51 dB (i.e.,
PSNR=10.84 dB).

In order to track the intermediate steps of the scheme, we compare the
stacked autocorrelation and the designed filter side by side in Figure 1 for the
low noise case. Then Figure 5 illustrates the filter with and without truncation
for the σ = 0.3 and σ = 0.6 cases. The effect of smoothing in the frequency
domain is then shown in Figure 6, which displays the frequency responses of the
filters in Figure 5.

3.2 Field data

In order to test the validity of the proposed scheme with microseismic data
that would be received by a surface sensor array, we generate a set of 182 traces
with different time delays from a single seismic trace. The waveform used in
this study comes from the High Resolution Seismic Network (HRSN) operated
by Berkeley Seismological Laboratory, University of California, Berkeley, the
Northern California Seismic Network (NCSN) operated by the U.S. Geological
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Figure 4: Synthetic data showing 20 out 200 traces. (a) Noisy traces with σ = 0.3,
(b) denoising result for the σ = 0.3 case, (c) Noisy traces with σ = 0.6, (d) denoising
result for the σ = 0.6 case.
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Figure 5: Designed filter for (a) σ = 0.3, without truncation; (b) σ = 0.3, truncated
and windowed to −50 ≤ τ ≤ 50; (c) σ = 0.6, without truncation; (d) σ = 0.6,
truncated and windowed to −50 ≤ τ ≤ 50.
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Figure 6: Frequency response of the filters (a) σ = 0.3, without truncation; (b) σ = 0.3,
truncated and windowed to −50 ≤ τ ≤ 50; (c) σ = 0.6, without truncation; (d)
σ = 0.6, truncated and windowed to −50 ≤ τ ≤ 50.
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Survey, Menlo Park, and distributed by the Northern California Earthquake
Data Center (NCEDC). The sampling frequency is 250 Hz and each trace con-
tains data for 10 seconds. We rescale every trace to have a normalized peak
value of 1.0 and regard them as clean data. We then add AWGN of σ = 0.2
to the clean data, which gives SNR=−2.53 dB (i.e., PSNR=13.98 dB). For con-
ciseness we only show 14 clean and noisy traces in Figures 7(a) and 7(b). In
Figure 8 we present a clean sample trace and its noisy version as a close-up.

The denoising result using the ACF-designed filter with a truncation window
of τ = 190 is shown in Figure 7(c). We not only observe that the denoising
scheme clearly recovers the P-wave and S-wave arrivals (indicated using red
and blue arrows, respectively) but also well preserves the waveform from noisy
traces where precise manual detection of the signal is almost impossible. The
denoising result for a sample trace is shown in Figure 9, where we note the
P-wave and S-wave arrivals are preserved in the regions indicated by red and
green circles, respectively, on the spectrogram in Figure 9(c). As reference, we
present the filter with and without truncation and the corresponding frequency
response amplitude in Figure 10, where the smoothing effect is easy to see.
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Figure 7: (a) original traces, (b) noisy traces, SNR=−2.53 dB (c) denoising result.
P-wave and S-wave arrivals are indicated using red and blue arrows, respectively.

The methodology described above was tested on a real data set. However,
due to the proprietary nature of the data set we are unable to include those
results. This is the reason why we used the simulation in Figure 7 that is gener-
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Figure 8: The true waveform (blue) and its noise contaminated version SNR=−2.53 dB
(red).
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Figure 9: Spectrogram of (a) original trace, (b) noisy trace, SNR=−2.53 dB, and
(c) denoising result. The red and green circles indicate the P- and S-wave arrivals,
respectively.
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Figure 10: Impulse response of ACF-designed filter (a) without truncation, (b) trun-
cated and windowed to −190 ≤ τ ≤ 190. Frequency response (c) without truncation,
(d) truncated and windowed to −190 ≤ τ ≤ 190.

ated by manually shifting real traces. As we indicated earlier, the prerequisite
for this method to work is that the recorded data across all sensors in the array
must have similar frequency content (although the waveforms may be altered
slightly). With the proprietary real data set, we obtain results similar to what
is shown in Figure 7 above.

Finally, note that this method is effective in suppressing uncorrelated noise,
not correlated (i.e., colored) noise. Consequently, we do not expect our method
to be applicable in all noise scenarios. In the next section we show that some pre-
conditioning can be performed to decorrelate additive noise when prior knowl-
edge is available.

3.3 Examples for noise prewhitening

In order to verify the necessity and validity of prewhitening for microseismic
data with additive colored noise, we consider 200 microseismic noisy traces of
SNR=−10 dB (the PSNR is not calculated since the noise is not AWGN). The
first 20 noisy traces are shown in Figure 11(a). The power spectrum of the noise
is higher for low frequency and is identical for all sensors. A prewhitening filter
of degree 20 is learned from the signal segments that contain only noise. The
output of the prewhitening filter is shown in Figure 11(b). Figure 11(d) shows
the superiority of the prewhitened and denoised result to denoising without
prewhitening in Figure 11(c).

In order to demonstrate the validity of the prewhitening process, we compare
the noise power spectrum of noise-only segment on the first sensor before and
after whitening (see Figure 12). We can see the power spectrum of the noise is
effectively flattened.
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Figure 11: Denoising results for colored noise. (a) noisy data, colored noise
SNR=−10 dB, (b) data after applying a 20th order prewhitening filter, (c) denois-
ing without prewhitening, (d) denoising result after prewhitening.
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Figure 12: Power spectrum density (PSD) of (a) colored noise, and (b) after prewhiten-
ing.

4 Detection

In order to alleviate the computational burden when processing large data
sets acquired with passive monitoring, it is always desirable to have an accurate
detection of seismic events as the first component of the microseismic data
processing pipeline. The total work load can be significantly reduced, if we
apply further processing only to the part of data that contains detected seismic
events. Conventional detection schemes are commonly based on changes in
certain characteristics along single traces, such as trace energy, absolute value of
amplitude, short-term-average/long-term-average (STA/LTA) type algorithms
(Earle and Shearer 1994), and waveform correlation with strong events (Gibbons
and Ringdal 2006; Michelet and Toksöz 2007; Song et al. 2010), to name a few.
However, these methods require either good SNR or isolated strong events that
serve as a template. Otherwise, they typically produce many false alarms when
an aggressive threshold is employed to detect small events.

In the foregoing sections, we have shown that the stacked autocorrelation
can efficiently estimate the frequency characteristics of a common waveform
in the presence of AWGN for multi-channel microseismic data. If waveforms
originating from the same seismic event are received across the array of sensors,
high coherence is commonly observed. Based on this fact, we devise a multi-
channel detector that is capable of exploiting the information on all channels at
once.

In order to achieve a reasonable detection resolution in the time domain, we
adopt a sliding window technique from the conventional schemes. The detection
indicator η(t), which corresponds to the sliding window starting at t, is defined
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as follows:

η(t) =
1

N

N∑
i=1

maxω |F{xi ? xi}|
‖F{xi ? xi}‖1

, (19)

where xi(t) is the i-th trace truncated (and weighted) by the sliding window
starting at t. Since the denominator ‖F{xi ?xi}‖1 is proportional to the energy
of xi, each trace is normalized prior to summation in (19). Therefore, the
detector defined in (19) measures only the resemblance of the traces which is
independent of their amplitudes. In data from natural micro-earthquakes, or
microseismic data from hydraulic fracturing, the amplitudes of signals could
vary significantly across a sensor array. Thus, the normalization in (19) for all
traces is necessary.

5 Detection example

In this section, a synthetic example using a seismic data section obtained
by manually time-shifting a real seismic trace plus random noise is shown in
Figure 13 to demonstrate the effectiveness of the pre-detection indicator η(t)
based on the stacked autocorrelation as proposed in (19). The synthetic data
shown in Figures 13(a) and 13(c) includes 30 traces which were delayed with
a linear moveout between 15 and 20 seconds from a single real seismic trace
which consists of both P-wave and S-wave phase. The seismic trace is from the
same data set as Figure (7)(a), whose sampling frequency is 250 Hz. Additive
white Gaussian noise of σ = 0.1 (for high SNR at PSNR = 20 dB) and σ = 0.4
(for low SNR at 8 dB) is used in Figures 13(a) and 13(c), respectively. We use
a sliding window of length 0.5 sec with an overlap of 0.4 sec and then compute
η(t) with a 128-point FFT.

In the high SNR case, the detection indicator η(t) returns obvious high values
during the time frames of the coherent signal arrival, while the rest of the time
seems to exhibit a noise floor at about −33 dB. Setting a threshold at −29 dB
would give nearly perfect detection of the simulated microseismic events in the
time domain. In the low SNR case, the noise floor stays at about the same
value, but the detection region has much smaller values and it would be more
difficult to set a threshold to separate the true arrivals from the noise floor.
Since η(t) measures the coherence among traces, the noise floor does not change
with the additive noise amplitudes. Thus, as the noise amplitudes increase, the
η(t) values within the coherent signal region decrease and will eventually fall
below the noise floor. As demonstrated in Figure 13(d), our proposed detection
indicator η(t) can deal with a PSNR as low as 8 dB using hard thresholding.
Furthermore, improving the peak detector with methods such as smoothing or
polynomial fitting can further reduce the lower-bound of detection PSNR.
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(a) Synthetic traces, σ = 0.1 (PSNR = 20 dB) (b) Detection
indicator

(c) Synthetic traces, σ = 0.4 (PSNR = 8 dB) (d) Detection
indicator

Figure 13: Synthetic multichannel data using 30 real seismic traces with linear moveout
totaling 5 seconds contaminated by AWGN of (a) σ = 0.1 and (c) σ = 0.4. Pre-
detection results using the indicator (19) are shown in (b) and (d), respectively.
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6 Conclusion

Surface microseismic data, which is typically noisy, requires robust detection
and an explicit denoising step before further processing. We present a multi-
channel denoising and detection method based on autocorrelations which can
effectively suppress uncorrelated noise without knowing relative time offsets. A
prewhitening scheme extends the applicability of this denoising filter to more
general and practical scenarios of microseismic monitoring. The effectiveness of
the detection, denoising scheme, and the prewhitening for colored noise is tested
using synthetic and real seismic waveforms.
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