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Abstract

In the presence of background noise and interference, arrival times
picked from a surface microseismic data set usually include a number of
false picks which lead to uncertainty in location estimation. To eliminate
false picks and improve the accuracy of location estimates, we develop a
classification algorithm (RATEC) that clusters picked arrival times into
event groups based on random sampling and fitting moveout curves that
approximate hyperbolas. Arrival times far from the fitted hyperbolas are
classified as false picks and removed from the data set prior to location
estimation. Simulations of synthetic data for a 1-D linear array show that
RATEC is robust under different noise conditions and generally applica-
ble to various types of media. By generalizing the underlying moveout
model, RATEC is extended to the case of a 2-D surface monitoring ar-
ray. The effectiveness of event location for the 2-D case is demonstrated
using a data set collected by a 5200-element dense 2-D array deployed for
microearthquake monitoring.

Keywords— passive seismic, sensor array, time picking, classification, multi-
channel

1 Introduction

Locations of microseismic events provide important information about condi-
tions in a reservoir during hydraulic fracturing (Duncan 2005). If direct arrivals
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can be picked at individual receivers then a geometric calculation such as trian-
gulation can be used to determine the location of an event. This is a common
practice in earthquake seismology (Zhang and Thurber 2003). For microseis-
mic events such a method is viable for borehole data (Maxwell et al. 2010),
but despite its simplicity and low computation cost, it has been argued that
microseismic events are not reliably detected on individual traces from surface
data (Duncan and Eisner 2010). Alternatively, geophysicists from exploration
seismology have developed stacking methods and migration based methods that
do not rely on picked arrival times. A travel-time migration based method was
implemented by Duncan (2005), which stacks waveforms using calculated travel
times, and later expanded by Zhebel and Eisner (2015) to include moment ten-
sor inversion. Along with other semblance-based methods (Tan et al. 2014;
Frantǐsek et al. 2015) these methods discretize a monitoring region and use grid
search to find the optimal location that yields the best stacking result under an
assumed velocity model. Although attempts have been made to accelerate the
exhaustive search for the best location by global optimization such as differential
evolution (Zhu, Liu and McClellan 2015) and particle swarm (Luu, Noble and
Gesret 2016), these methods are, in general, slow on large monitoring regions
with high spatial resolution requirements. Gajewski and Tessmer (2005) used
reverse time migration (RTM) to find event locations which was later general-
ized by Artman, Podladtchikov and Witten (2010) and improved by Nakata and
Beroza (2016) through exploring different imaging conditions. Recent develop-
ment of full-wave inversion (FWI) has inspired full-wave based methods (Witten
and Shragge 2016; Sharan et al. 2016) however, like the RTM based methods,
the finite-difference (FD) modeling they rely on is computationally intensive
and can be slower than the grid search program in travel-time based methods.
Widespread development of hydraulic fracturing produces increasing amounts of
data from passive monitoring which, in turn, demands a more efficient process-
ing scheme for surface arrays that can be deployed without drilling monitoring
wells. We will show that the issue of low SNR in surface-array recordings can
be overcome so that arrival-time based methods become attractive because of
their low computation cost.

A recent study by Akram and Eaton (2016) summarized and compared the
most common arrival time picking methods on a single trace, such as short-term
over long-term average ratio (STA/LTA) (Allen 1978; Earle and Shearer 1994),
a modified energy ratio (MER) (Han, Wong and Bancroft 2009), a modified
form of Coppens’ method (MCM) (Sabbione and Velis 2010), and Akaike’s in-
formation criterion (AIC) (Takanami and Kitagawa 1991), to name a few. A
common theme in all of these methods is the use of processing to increase the
significance of detected peaks and minimize the number of false picks from noisy
data which leads to bad event location estimation. Ideally, when all the picks are
perfect a moveout curve can be computed to fit exactly through the arrival-time
picks. Alternatively, Zhu, Liu and McClellan (2016) took advantage of the fact
that a group of receivers with both good and bad picks still contains a subset
of picks that follow an expected trend of arrival times when events are present.
By fitting a moveout curve through subsets of picked arrival times using ran-
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dom sample consensus (RANSAC) (Fischler and Bolles 1981), Zhu et al. (2016)
were able to recover the true arrivals in the presence of a large amount of false
picks under low SNR conditions. In this paper, we continue the study of ap-
plying RANSAC for picked arrival times and improve our method described in
(Zhu et al. 2016) for realistic seismic monitoring scenarios. To reduce the false
picks in time picking results and thus improve the event location estimation, we
propose a RANSAC-based arrival time clustering (RATEC) method as a pre-
processing step that groups true picked times into different events and identifies
false picks. To demonstrate the accuracy of RATEC for 1-D receiver arrays,
synthetic simulations are conducted in homogeneous, layered and non-layered
isotropic media. The proposed scheme is also validated through a natural earth-
quake dataset collected on a 5200-element 2-D surface network in Long Beach,
CA. All cases show that the RATEC framework is accurate and robust under
low SNR conditions and applicable to a variety of different monitoring setups.

2 Motivation

To eliminate false picks generated by a time picking algorithm due to back-
ground noise, a classifier for true event picks is necessary. Such a classifier needs
to learn the pattern of a seismic event from all arrival-time picks and apply a
rule to cluster the picks into two groups: true event and false picks. It also needs
to be robust enough to accommodate the variety of patterns shown by different
events. Since the true first-arrival times of any isolated seismic event result in a
predictable moveout curve on a monitoring receiver array, a parametric model
for valid moveouts can be used to build a classifier for true picks of an actual
seismic event.

Moveout curves have been studied extensively in seismology by Dix (1955)
and Dellinger, Muir and Karrenbach (1993) (See Appendix A). For homoge-
neous media, it is simply a hyperbola. Dix (1955) proved that moveout curves
can also be modeled as hyperbolas for isotropic layered media when the receivers
have small offsets relative to an event epicenter. He also gave explicit paramet-
ric equations for such curves (as a rotated hyperbola) when a tilting layer is
present. Dellinger et al. (1993) showed that for TI (transverse isotropic) media,
an elliptic parametric model can be used to approximate the expected moveout
curves. Since horizontal variation in velocity is relatively small in microseismic
monitoring, a hyperbola can be used to approximate the arrival time moveout
curve for event in non-layered media as well. To sum up, for a surface moni-
toring receiver array in microseismic monitoring, a quadratic parametric model
exists for a moveout curve observed on receiver array from a valid seismic event.
Thus, the problem of finding the true picks for a seismic event can be solved by
fitting a parametric model using picked arrival times. For simplicity, we only
consider isotropic media with short offsets in this study which corresponds to
a hyperbola. Ellipses share the same quadratic model as hyperbolas, but with
different parameter requirements.

However, due to poor SNR on surface monitoring arrays, there are many
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false picks that are far from true event moveout curves which we refer to as
outliers. Least squares curve fitting uses as many data points as possible to
minimize the amount of misfit error. Although it is the optimal solution under
a Gaussian random noise assumption, it fails dramatically in the presence of
outliers. We, instead, adopt a random sampling scheme that repeatedly uses
a minimum number of data points to fit a curve, and selects the best curve
(hypothesized model) as the one with the most data points close to it, i.e., with
the maximum number of inliers.

This random sampling scheme was first proposed by Fischler and Bolles
(1981) as RANSAC and then improved by many others (Stewart 1995; Torr
and Zisserman 2000; Chum and Matas 2002; Tordoff and Murray 2005; Chum
and Matas 2005). It has also been extended to fit multiple models simultane-
ously (Wang and Suter 2004; Toldo and Fusiello 2008). Based on the fitted
hyperbolic model, the picked arrival times are, in fact, clustered into event
groups and non-event groups. Such clustering not only separates picked arrival
times into different phases (e.g., P-wave and S-wave phases), but also improves
the accuracy of localization results by eliminating false picks due to noise.

3 Method

3.1 RANSAC overview

Despite many variations and adaptations of RANSAC (Choi, Kim and Yu
2009), there are essentially two steps per iteration (hypothesize-and-test) which
will be repeated to yield the best fit to the data:

• Hypothesize: A minimal sample subset (MinSet, denoted as ΩkM) is ran-
domly selected from the dataset and the unique model parameters (pk)
are computed for ΩkM.

• Test : Elements in the dataset (ΩD) are evaluated to determine which ones
can be labeled as inliers, i.e., consistent with the hypothesized model in
the sense that the distance from the model’s moveout curve is less than
some prescribed value (δ). The set of all such inliers is called a consensus
set (ConSet, denoted as ΩkC).

Note that ΩkM ⊂ ΩkC ⊂ ΩD. A set ΩkM consists of only the minimal number of
samples required to uniquely determine a model, e.g., two samples for a line
and three for a circle. The more elements in ΩkC, the better the model we have
obtained for the kth hypothesis.

Notice that each RANSAC iteration requires very little computation and
there exists a unique solution for each chosen MinSet. In this way, we can af-
ford using a large number of iterations consistently to perfect a hypothesized
model. Fischler and Bolles (1981) give a statistical analysis of the required iter-
ation number of RANSAC process with inlier ratio of u (ratio between number
of inliers and total number of data points). The number of iterations N̂ to
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Figure 1: Flow chart of RANSAC process within each iteration. After many iterations
the case with the biggest ConSet is declared the best parameter vector p∗.

guarantee that at least one ΩM will only contain true picks with probability p
is

N̂ =
log(1− p)

log(1− um)
, (1)

where m is the size of a MinSet, which is 5 for a hyperbola and 9 for a
hyperboloid. For example, when 50% of all picks are close to a hyperbola
(u = 0.5,m = 5), we can guarantee a 99% chance of finding an outlier-free ΩM

(p = 0.99), if we run N̂ = 145 iterations. For a 2-D surface array, m = 9, and
then N̂ = 2356. Although N̂ may be large, the core operations of deriving the
hyperbola parameters and testing its validity are extremely fast so thousands
of trials are reasonable.

The RANSAC process is summarized as the flow chart in Figure 1. After
the kth iteration, the current best ConSet Ω∗

C is updated with the kth ConSet
if ΩkC has more inliers. Then Ω∗

C is used to estimate the current best inlier

ratio u∗. Based on equation (1), the number of iterations required N̂ can be
updated (Tordoff and Murray 2005). The current N̂ is also compared against
preset minimum and maximum values Nmax and Nmin. Once the termination
condition is satisfied, the best ConSet Ω∗

C and model parameter p∗ will be
returned; otherwise, the iteration loop will continue.

3.2 Parameter estimation

The proposed method uses a quadratic model to estimate the parameters of
a hyperbolic curve, which takes the following form:

P(x, y;p) = [x y]

[
a b/2
b/2 c

] [x
y

]
+ [d e]

[x
y

]
+ f = 0 (2)

or, equivalently,

P(x, y;p) = ax2 + bxy + cy2 + dx+ ey + f = 0, (3)

where p has six real elements θ = (a, · · · , f), but there are actually only five
free parameters, since one of the nonzero elements can be always normalized to
1. When the determinant

∆1 = 4

∣∣∣∣∣ a b/2 d/2
b/2 c e/2
d/2 e/2 f

∣∣∣∣∣ (4)
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is nonzero (∆1 6= 0), equation (3) defines a non-degenerate conic section. To
verify it is hyperbola, we must then check a second determinant

∆2 = 4

∣∣∣∣ a b/2
b/2 c

∣∣∣∣ = b2 − 4ac. (5)

When ∆2 > 0, equation (3) defines a hyperbola.
Given a set of n arrival time picks, (xi, yi) for i = 1, . . . , n, we form a n×6

data matrix Dn and a 6×1 coefficient vector p, such that Dnp is the model
P(x, y;p) evaluated at the time picks. With measurement error, there will be
a nonzero residual r as follows: x21 x1y1 y21 x1 y1 1

...
...

...
...

...
...

x2n xnyn y2n xn yn 1



a
b
c
d
e
f

 =

 r1
...
rn

 ⇔ Dnp = r. (6)

We use only five picks to uniquely determine p as discussed previously. If all
picks in ΩM are true picks, the residual term r is usually negligible. Then we
solve the linear system D5p = 0, which is effectively finding the null space
of D5. From the singular value decomposition (SVD) of D5, it is easy to see
that the last right singular vector v6 ∈ null(D5). Comparing with the pseudo-
inverse method used in (Zhu et al. 2016), the solution v6 adopted here is not
guaranteed to have the minimal L2 norm. However, we avoid the numerical
stability problems when the matrix DnD

T
n is ill-conditioned. To process the

large number of candidate MinSets ΩM efficiently, we do a quality control (QC)
of p by checking determinants, ∆1 6= 0 and ∆2 > 0, before proceeding to the
more computationally demanding test step that computes the distance between
ΩD and the hypothesized RANSAC model to obtain a ConSet Ωc.

3.3 Add perturbation to MinSets

With the presence of measurement noise, the null space method has a ten-
dency to fit the wrong type of curve, namely a parabola or an ellipse, which is
then eliminated by the parameter QC step. In noisy cases when the percentage
of inliers is low, this problem may cause RANSAC to select a suboptimal pa-
rameter vector whose curve passes through some outliers as well as true inliers,
as shown in Figure 2.

To overcome this tendency when fitting quadratic models, a constrained least
squares approach (Fitzgibbon, Pilu and Fisher 1999; O’Leary and Zsombor-
Murray 2004) has been developed to force the fitted curves to be hyperbolas
(and ellipses) by solving a generalized eigen system determined by a constraint
matrix. Although this method works for general hyperbolic curve fitting prob-
lems, its strategy runs against RANSAC’s MinSet assumption, i.e., using a
random set with the minimum number of points. Least squares employs as
many data points as possible in order to minimize the distance between the
data and the optimal model. However, the more points required in the MinSet,
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Figure 4: RANSAC classification of noisy data: (a) suboptimal fitting results from
direct null space method, (b) optimal fitting results from null space method with
perturbations.

the smaller the possibility that a MinSet will be outlier-free. This dilemma
restricts the ability of the constrained least-squares method to find a proper
model when the SNR is low.

Fortunately, the RANSAC process has the luxury of running a very large
number of fast iterations to find the optimal model. By randomly perturbing
the time picks in ΩkM to produce a few additional MinSets and running more
iterations, we can combat the effect of measurement noise. For example, after
adding a small perturbation to the picked arrival time in Figure 4a, the correct
moveout curve are selected in Figure 4b. Although we perturbed the picked
arrival times to get the model coefficients, the final output of inliers and the
location estimation are conducted on the original “unperturbed” data.

3.4 Processing pipeline

The overall processing pipeline of RATEC is summarized in Figure 5. Arrival
times are picked on pre-processed data to extract event features out of seismic
traces as time pick pairs (x, t). In this study, we use the widely adopted short-
term over long-term average ratio (STA/LTA) method to generate a characteris-
tic function for each seismic trace. However, any valid time picking method, such
as those included in (Akram and Eaton 2016), can replace STA/LTA depending
on the specific SNR condition. Peak detection is conducted on characteristic
functions to generate (x, t) pairs which are then clustered by RANSAC to se-
lect true picks that correspond to a valid event moveout. These clustered picks
can be fed into other location estimation programs such as double difference
(Waldhauser and Ellsworth 2000; Zhang and Thurber 2003). When no prior
knowledge of the velocity model is available, we provide a moveout curve fitting
based event location estimator assuming a homogeneous medium.

Notice that this is a highly flexible framework in which multiple methods can
be used for each block to optimize the performance for different datasets. Fig-
ure 5 provides a generic approach to demonstrate the accuracy and robustness of
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Figure 5: Processing pipeline of proposed RATEC method: peak detection can be
customized to adapt to the RANSAC framework; classification based on RANSAC
eliminates false picks when estimating the moveout curve for an event.

RATEC; however, it can be customized to specific needs and easily incorporated
into any time picking based processing workflow.

4 Pre-process seismic data for RANSAC classi-
fication

The input data can be pre-processed to facilitate peak detection and help
RANSAC better fit the moveout curve. The strategy is to encourage more time
peaks by including as many weak events as possible while not introducing too
many false picks. Here we give an example pre-processing method that takes
advantage of RANSAC’s ability to eliminate outliers while including more weak
picks that might be related to a true event.
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Figure 6: Detection methods for single event case on noise trace with PSNR = 6 dB
(true peak at t = 1.0 sec): (a) global maximum; (b) thresholding at 70% of global
maximum; and (c) adaptive thresholding at 95% of global maximum weighted by the
local zero-crossing rate. Adaptive thresholding picks true arrival time cluster with
only one false pick.

4.1 Guided peak detector

A straightforward approach to peak detection in characteristic functions is
to find the global maximum on each trace. However, such peak locations can
easily be affected by background noise as shown in Figure 6a, and smaller events
are overlooked when multiple events are present. Likewise, locating peaks by
local maxima is adversely affected by background noise since a noise signal tends
to have a large number of local peaks.

One way to include more time picks is to use thresholding at a fraction
of the maximum value. Shown in Figure 6b, setting the threshold to 70% of
the maximum value yields more picks. This method succeeds in finding more
arrival times (both true and false), but puts a heavy burden on the following
classification block if too many of these peaks are false ones. A better way to
include more time picks is to make a rough estimate of where the real signal lies
based on a signal attribute such as the local zero-crossing rate defined below:

rzc(τ) =
1

T

τ+T/2∑
t=τ−T/2

1(st st−1 < 0), (7)

where 1(st st−1 < 0) counts sign changes in st = sgn(s(t)), and T is the inter-
val over which rzc(τ) is computed. The local zero-crossing rate should be low
when the signal is present. Using 95% of the global maximum threshold on the
characteristic function weighted by

√
rzc(τ), Figure 6c shows that this guided

peak detector successfully picks only the real arrival time peak and the global
maximum (due to severe background noise).
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4.2 Merging close picks

With background random noise, there may be multiple peaks clustered
around a true event pick. This not only leads to more computational cost
in later localization algorithms but also introduces uncertainty into event loca-
tions. Such a problem can be solved by merging close picks into one pick. A
common practice in manual picking is to use the starting point of a pick cluster
as the event arrival time. This is reasonable as the peak detector usually picks
both the arrival signal (first break) and its coda wave (points that follow which
form a cluster of time picks). However, it not only requires more computa-
tion to search for closely located peaks but also can be misled by a false pick
that slightly leads the true picks. It can soon become tricky to set the correct
parameter for how close the picks need to be to each other for a merge.

We consider using Gaussian smoothing which is widely used for edge detec-
tion in image processing (Basu 2002). Gaussian smoothing helps in reducing
details (adjacent small peaks) within the characteristic function and attenuating
insignificant local peaks due to noise. It convolves the response function with a
Gaussian function defined below:

G(x) =
1√

2πσ2
e−

x2

2σ2 , (8)

where σ is the standard deviation which can be set as the dominant duration of
a wavelet (0.1 sec in this case). Although Gaussian smoothing cannot eliminate
all the close false picks, it can help mitigate such errors. Moreover, the RANSAC
process is less sensitive to inlier distance selection after Gaussian smoothing.

5 Seismic Examples

In this section, we explore the ability of the proposed RATEC method in
a more realistic scenario of seismic processing. In the first example, a Ricker
wavelet is manually delayed with moveout from a homogeneous medium assump-
tion to demonstrate the essence of the proposed method. The second example
uses a recorded seismic trace consisting of P-wave and S-wave phases which are
then manually delayed according to a layered velocity model to simulate data
from an array. This is a typical scenario in microseismic surface monitoring
and we demonstrate that RATEC is able to extract both P-wave and S-wave
phases and group them into event clusters. In the third example, we explore the
problem when the layered model assumption is violated by using the Marmousi2
velocity model to generate the testing data with a finite-difference time-domain
(FDTD) simulation. In the final example, we demonstrate that RATEC can be
easily extended to the case of a 2-D surface monitoring array by validating it
on a 5200-element 2-D dense array deployed for earthquake monitoring in Long
Beach, CA.
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5.1 Ricker wavelet in homogeneous media

For Figure 7a, a 25-element linear array with nominal spacing of 200 m is
deployed on the surface (i.e., 5 km aperture) to monitor a deep event 2 km
below the array center. The receiver locations are perturbed by additive white
Gaussian noise (AWGN) with σ= 50 m to simulate receiver offsets in the field
away from uniformly spaced locations due to unavoidable physical restrictions
in the field. Note that such perturbations effectively create a nonuniform linear
array. The raw data section is shown in Figure 7a with the true moveout curve
marked with a blue dashed line.

The source wavelet employed here is a Ricker wavelet, and the medium is
assumed to be homogeneous with a velocity of 3 km/s. AWGN with peak signal-
to-noise ratio (PSNR) of 6 dB is added to simulate random background noise.
Because PSNR is not affected by the trace length, it is used to measure the
noise level throughout the paper. Its definition is as follows:

PSNR = 20 log10

max(|si(t)|)
σ

, (9)

where si(t) is the signal at the ith receiver, and σ is the standard deviation of
the AWGN.

After applying the STA/LTA method on each trace, we use the zero-crossing
guided peak detector and peak merging to find the candidate arrival time picks.
These picks are passed to a classification block to be grouped into event (inlier)
and non-event (outlier) clusters. When zoomed in around the moveout curve
as shown in Figure 7b, a small deviation between the fitted curve and the true
moveout curve is observed; however, all picks close to the true moveout curve
are successfully clustered into the event/inlier group.

Once clustering and correction are complete in the previous steps, the im-
proved picked arrival times in this example can be used to locate events. There
are many existing event localization methods that use picked arrival times, such
as Geiger’s method (Geiger 1912) and the double-difference method (Wald-
hauser and Ellsworth 2000; Zhang and Thurber 2003). The corrected arrival
times can be used by these methods with known velocity models to improve the
location estimation.

When the velocity model is unknown, we can assume a homogeneous medium
in order to compute predicted arrival times from possible source locations.
Based on the inliers given by RATEC, we can minimize a nonlinear objective
function that measures the sum of squared errors between the RATEC classified
inlier picks and the predicted arrival times

ε =

n∑
i=1

(ti − tpi (x, T0, v))2 (10)

where ti is the RATEC pick at the ith receiver and tpi is the predicted arrival
time which is a hyperbola that depends on the event location x, origin time T0,
and homogeneous velocity v. The minimizer of equation (10) gives the event
location and event origin time, and the medium velocity simultaneously.
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Figure 8: Location results with and without the RATEC scheme using 100 Monte
Carlo experiments under three different background PSNR noise levels: (a) 20 dB, (b)
8 dB, and (c) 6 dB. Blue ellipses (in the insets) show the one-sigma confidence interval
of the event location estimator. Note the changing axis limits for the insets. The
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location at (2500, 2000) m.
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To validate the accuracy of this localization scheme, 1000 Monte Carlo ex-
periments are conducted to compare the results with and without the RATEC
scheme under different noise levels. Only the first 100 data points, which is
sufficient to capture the location estimation distribution as a point cloud, are
shown in Figure 8 to avoid crowding. For low background noise, PSNR = 20 dB,
both methods obtain the event location accurately around the true event loca-
tion (2500, 2000) m as shown in Figure 8a. The uncertainty in depth is mostly
a result of the array geometry which has poor resolution in the direction per-
pendicular to the linear array. The location results with RATEC have a more
compact distribution around the true location. There are more blue dots than
yellow triangles within the one-sigma confidence interval indicated by the blue
ellipse. The location estimates without RATEC start to fall apart when the
PSNR is around 8 dB as shown in Figure 8b. Although most of the yellow tri-
angles are still around the true location region with a larger spread, there are
a significant number of location estimates far away from the event region. On
the other hand, the results with RATEC show a consistent distribution around
the true event region in Figure 8b. Under severe noise as shown previously in
Figure 7 with 6 dB PSNR, the location results without RATEC become com-
pletely unreliable while those with RATEC still give very good estimates. In
Figure 8c about 50% of the blue dots, but only one yellow triangle, lie within
the confidence ellipse.

The accuracy of the location estimate with and without RATEC measured
in root-mean-square error (RMSE) for the complete 1000 Monte Carlo experi-
ments are shown in Table 1. With the RATEC correction, the location estimate
in easting is improved significantly. The error in depth is much larger but is
reduced by applying the RATEC correction.

Table 1: RMSE of RATEC localization results from 1000 Monte Carlo experiments.

RMSE
Easting Depth

20 dB 8 dB 6 dB 20 dB 8 dB 6 dB
Without RATEC 8.88 312.21 911.79 386.96 1273.19 1914.61

With RATEC 6.09 25.49 65.73 199.43 869.78 1025.52

5.2 Recorded seismic trace in layered model

Here, the seismic trace shown in Figure 9a is used as a source signal. After
manually picking the P-wave and S-wave phases, shown in Figure 9b and 9c
respectively, the P and S phases are delayed separately according to their travel
time (T ) computed from a layered model against horizontal offset (x) using the
parametric equation (11) given by Dix (1955). A detailed explanation can be
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Figure 9: (a) Recorded seismic trace with P-wave (blue) and S-wave (green) phases
for layered model simulation, (b) manual pick of P-wave phase, and (c) S-wave phase.

found in Appendix A. 
x =

∑
k

phkvk√
1− (vkp)2

T =
∑
k

hk

vk
√

1− (vkp)2

(11)

where p is the ray parameter that is constant among all layers, hk and vk are
layer thickness and layer velocity which defines a layered velocity model. Unlike
the hyperbolic approximation discussed before, this equation is mathematically
valid even when x → ∞; however, the direct wave may not necessarily be the
first arrival wave when x is large. In addition, for large x cases, the SNR
condition may be too bad for a valid localization problem. Thus, all examples
here are conducted for small x (less than 5 km).

The layered velocity model used in this example as shown in Figure 10a is
taken from Marmousi2 elastic velocity model (Martin, Wiley and Marfurt 2006).
The top water layer in Marmousi2 is removed and event source is located around
2.5 km deep. The same nonuniform surface array as in Section 5.1 is used for
monitoring underground seismic events occurring at the center of the array.

With noise at 10 dB PSNR, the P-wave and S-wave arrivals are not obvious in
the raw data shown in Figure 10b. With a spectrogram the dominant frequency
of the arrival event is estimated to be 10 Hz, so a low-pass filter with cutoff
frequency at 20 Hz is used as pre-processing. Both P-wave and S-wave arrivals
are observed in Figure 10c after low-pass filtering. The result of applying the
RATEC method is shown in Figure 10d, where moveout curves were generated
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Figure 10: Layered velocity model example using recorded seismic trace with P-wave
and S-wave phases: (a) 1-D velocity model from Marmousi2; (b) noisy raw data with
PSNR = 10 dB with respect to the S-wave peak; (c) 20 Hz low-passed data; (d) fitted
moveout curve and classification results comparing to true P-wave and S-wave moveout
curves.
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by fitting the classified and corrected arrival time picks. The proposed method
is used iteratively in this example to extract all possible event phases: after one
moveout curve is detected and identified, its outliers are used as the input for
the next iteration to search for more curves until there are not enough time picks
to successfully define a moveout curve. Here, both P-wave (blue) and S-wave
(green) phases are identified in this example with most of the true arrival times
labeled correctly.

5.3 Ricker wavelet in non-layered media example

Although RATEC is based on a layered velocity model assumption, it is
robust enough to handle non-layered model to some extent. In Figure 11a,
the acoustic Marmousi model is used to introduce horizontal variation in the
velocity model. A finite-difference time-domain based numerical simulation is
used to generated the receiver data shown in Figure 11b with 10 dB PSNR of
AWGN. Since each trace has different peak value, which is common in a real
seismic scenario, the PSNR defined here uses the global peak of all the traces.
Receivers in the layered region (0 ∼ 1000 m) tend to have better SNR than
those in the non-layered region (1000 ∼ 1500 m).

After applying the RATEC scheme, Figure 11c shows the results of curve
prediction and arrival time labels. Even though the true moveout is not exactly
a hyperbola, the RATEC method is able to label all the true arrival times given
a reasonable tolerance distance. Zoomed in around the layered region, good
prediction and perfect labeling are observed in Figure 11d. Notice that there
now exists larger offsets between picked and true arrival times. Figure 11e shows
the results in the non-layered region where the SNR is worse. Despite the fact
that many picks in that region are false picks, RANSAC is able to eliminate
most of the picks far away from the true moveout curve and label the true time
picks correctly.

5.4 Surface extension on Microearthquake data

RATEC can be easily extended to a surface array by changing the underlying
hyperbolic curve model to a hyperboloid surface model. Similar to equation (2),
a hyperboloid surface can be defined using a 3-D quadratic equation which takes
the following general form:

P(x, y, z;p) = [ x y z ]

[
a b/2 d/2
b/2 c e/2
d/2 e/2 f

][
x
y
z

]
+[ g h i ]

[ x
y
z

]
+j = 0.

(12)
Using the same RATEC scheme, we can adapt the framework to hyperboloid sur-
face fitting by finding the parameter vector p = (a, b, . . . , j) in a 10-dimensional
space. Although this may seem to be a much larger parameter space, it adds
little burden on search process as RANSAC searches only ΩM rather than com-
plete parameter space.
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Figure 11: Marmousi model example under 10 dB PSNR: (a) velocity model (red dot
indicates source location), (b) synthetic data (red line indicates true arrival times), (c)
RATEC results, (d) zoomed-in results between 400 m and 600 m and (e) zoomed-in
results between 1000 m and 1200 m.
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Figure 12: Top view of the sensor array
with located event indicated by red star.

Figure 13: Snapshot of the seismic
dataset at time t = 3020.00 s; the
visible event lies inside the red cir-
cle.

The proposed method was then tested on a data set of 50 sec collected by the
Long Beach nodal array in southern California which contains 5200 sensors. The
top view of the sensor array is shown in Figure 12. Prior to applying RATEC
scheme, no reliable location estimation can be given by picked arrival times due
to a large number of false picks as shown in Figure 14. We can use the picked
arrival time to locate event using a homogeneous medium assumption since
there is no velocity model known prior to this experiment. Based on the true
picks given by RATEC, this seismic event is recognized as a surface event whose
location is shown by its epicenter marked by the red star in Figure 12. In order
to verify our result, we schematically show the corresponding snapshot on the
sensor array in Figure 13. The gray-scale of the dots indicates the clipped signal
amplitude on the corresponding sensor. The red circle in Figure 13 confirms that
in the inverted time and location using the classified true picks, there is indeed
a weak event that is barely visible in the array. Moreover, the work log shows
that there is a surface source in the estimated area but the local earthquake
catalog has no record of earthquakes during the event time. In Figure 14 we
show the time picking results that contain a large number of false picks. The
best-fitted hyperboloid surface from 3-D RATEC is shown as the red surface.
On a laptop, RATEC takes just 31 sec to finish the classification process, which
is sufficient for real-time processing (note that the recording duration is 50 sec).

5.5 Parameter selection

Although it may seem that there are many parameters to be set for the
RATEC method, they are actually tied to just one parameter that can be esti-
mated from the data itself: fdom, the dominant frequency of the source wavelet.
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Figure 14: Top view of the picks (◦) from the 2-D sensor array with fitted surface in
red.

Table 2: Parameters used in all simulations.

Parameter Recommended selection
Dominant frequency (fdom) 10 Hz

Dominant period (Tdom) 1/fdom sec
Cut-off frequency in LPF 2fdom

Short-term window (STW) 0.5Tdom
Long-term window (LTW) 5Tdom

Zero-crossing rate window length (T) LTW
Gaussian smooth function sigma STW
Threshold Distant (ThresDist) 0.5Tdom
RANSAC additive noise sigma ThresDist / 2

All parameters used in the above simulation examples are summarized in Table 2
and their recommended relationship to fdom is listed as well. These parameters
work well with Ricker wavelet based simulations since the dominant frequency
is a valid measurement of wavelet length (dominant period Tdom). However,
sometimes the true wavelet length is longer than the dominant period (Tdom),
e.g., a seismic trace with dispersion. In this case, we fix the cut-off frequency
at 20 Hz but make Tdom longer to alleviate the problem.

6 Conclusion

In this paper, we tackle the problem of event location estimation from arrival
times by fitting a parametric model and proposed an RANSAC-based fitting
method (RATEC) to classify picked arrival times and detect possible events.
RATEC discriminates true event arrival times from false picks by associating
them with some reasonable moveout curves. Tests with synthetic data show that
RATEC performs well for a 1-D linear array under layered medium assumption,
as well for non-layered media and in the presence of dispersion. RATEC is
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also expandable to the case of 2-D surface arrays by replacing the underlying
hyperbolic curve model with a hyperboloid surface model. The effectiveness of
event location for the 2-D case is demonstrated in a 5200-element dense 2-D
array for earthquake monitoring at Long Beach, CA.
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A Parametric model of moveout curves

In many microseismic applications, accurate velocity models may not be
available. However, a layered medium is commonly assumed for a shale rock
region, in which case an estimate of the event location can be inferred from
the arrival-time moveout curve across the monitoring geophone array. Using
arrival times not only has a clear physical meaning but also it turns out to be
computationally efficient. The primary requirement for this method to work is
that there exists a parametric model T (x) that approximates the arrival time T
versus horizontal offset x. By estimating the finite number of model parameters,
an event location can be uniquely determined. Over the years, such parametric
models have been gradually updated and generalized for various types of media.

A.1 Homogeneous medium

For a homogeneous medium, the geometry of ray tracing is shown in Fig-
ure 17a. For an event originating at time T0 and location (x0, h), a sensor at x
will receive the signal at time T (x), so the relation between source-to-receiver
travel time T (x)− T0 and the horizontal offset (x− x0) is

v2[T (x)− T0]2 = v2[T (x0)− T0]2︸ ︷︷ ︸
=h2

+(x− x0)2. (13)

where we note that the zero-offset travel time is T (x0)− T0 = h/v. The travel-
time equation (13) can be rewritten in a form that is recognizable as the standard
form of a hyperbola

[T (x)− T0]2

[T (x0)− T0]2
− (x− x0)2

v2[T (x0)− T0]2
= 1. (14)

Thus, an event originating at time T0 and location (x0, v[T (x0) − T0]) can be
uniquely determined by estimating the parameters T0, x0, T (x0), and v in equa-
tion (13), or (14). The estimation involves fitting a hyperbola to the picked
arrival times T (xj) in a linear surface array.
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Figure 17: Geometry of ray paths and travel time for (a) homogeneous medium with
velocity v, and (b) a layered media
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A.2 Layered isotropic media

A layered isotropic media, shown schematically in Figure 17b, is a little more
complex than a homogeneous medium. The travel time ∆Ti and horizontal offset
∆xi of the i-th layer can be modeled as follows:

∆xi = hi tan θi =
phivi√

1− (pvi)2
,

∆Ti =
∆hi

vi cos θi
=

hi

vi
√

1− (pvi)2
,

(15)

where p = sin θi/vi is the ray parameter in Snell’s law which is constant over
all layers. Within each layer, the travel time has a hyperbolic relationship with
offset, i.e., ∆Ti(xi) defines a hyperbola, so the overall travel time ∆T (x) =
T (x)− T0 computed as the sum is not exactly a hyperbola

∆x =

n∑
i=1

∆xi =

n∑
i=1

phivi√
1− (pvi)2

,

∆T =

n∑
i=1

∆Ti =

n∑
i=1

∆hi

vi
√

1− (pvi)2
.

(16)

However, (Dix, 1955) proved that a layered isotropic media behaves approxi-
mately like the homogeneous model when the offset x is close to zero. In other
words, a hyperbolic moveout curve is observed near ∆x = 0 for an isotropic
layered model with an equivalent velocity of

v2RMS =

n∑
i=1

v2i∆Ti

n∑
i=1

∆Ti

. (17)

In microseismic monitoring the receiving array is usually positioned over the
top of the monitored events, so the offset x should be close to zero and the
approximation (17) can be used. Moreover, Dix (1955) gave a correction for a
tilted layered model as well—the (approximate) relationship between T and x
is still described by a hyperbolic curve

∆T (x)2 = ∆T (0)2 +
∆x2

(vRMS/ cos θ)2
. (18)

where θ is the tilt angle.

A.3 Parametric model for TI media

It is the parametric model rather than a hyperbolic curve that is essential
to the data fitting method we will propose. In cases of transverse isotropic (TI)
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media, Dellinger et al. (1993) gave an elliptic approximation of the arrival-time
moveout curve

∆T (x)2 =
T (0)4 + (FW + 1)T (0)2V −2

NMO∆x2 + F 2
WV

4
NMO∆x4

T (0)2 + F 2
WV

−2
NMO∆x2

, (19)

where x is the offset, T (0) is the vertical travel time, VNMO is the near-offset
NMO velocity, and FW is a dimensionless anisotropy parameter. Although
equation (19) is a rational form with a fourth-order numerator and seems to
be far from a hyperbolic curve, the basic idea is still valid: fitting a parametric
model for T (x) to localize an event. In this paper, we use the simpler hyperbolic
model as a demonstration. The method to be proposed can be extended easily
to other types of parametric models that adapt to different types of media.
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